Sparse Polynomial Chaos expansions using variational relevance vector machines
نویسندگان
چکیده
منابع مشابه
Variational Relevance Vector Machines
The Support Vector Machine (SVM) of Vapnik [9] has become widely established as one of the leading approaches to pattern recognition and machine learning. It expresses predictions in terms of a linear combination of kernel functions centred on a subset of the training data, known as support vectors. Despite its widespread success, the SVM suffers from some important limitations, one of the most...
متن کاملPost-Maneuver Collision Probability Estimation Using Sparse Polynomial Chaos Expansions
This paper describes the use of polynomial chaos expansions to approximate the probability of a collision between two satellites after at least one performs a translation maneuver. Polynomial chaos provides a computationally efficient means to generate an approximate solution to a stochastic differential equation without introducing any assumptions on the a posteriori distribution. The stochast...
متن کاملpolynomial chaos expansions KEVIN
Submitted for the MAR13 Meeting of The American Physical Society Simulation of stochastic quantum systems using polynomial chaos expansions KEVIN YOUNG, MATTHEW GRACE, Sandia National Laboratories — We present an approach to the simulation of quantum systems driven by classical stochastic processes that is based on the polynomial chaos expansion, a well-known technique in the field of uncertain...
متن کاملConjunction Assessment Using Polynomial Chaos Expansions
Brandon A. Jones(1), Alireza Doostan(2), and George Born(3) (1)(3)Colorado Center for Astrodynamics Research, University of Colorado Boulder, UCB 431, Boulder, Colorado, 80309, 303-735-4490, [email protected], [email protected] (2)Department of Aerospace Engineering Sciences, University of Colorado Boulder, UCB 429, Boulder, Colorado, 80309, 303-492-7572, alireza.doostan@colorad...
متن کاملA priori testing of sparse adaptive polynomial chaos expansions using an ocean general circulation model database
This work explores the implementation of an adaptive strategy to design sparse ensembles of oceanic simulations suitable for constructing polynomial chaos surrogates. We use a recently developed pseudo-spectral algorithm that is based on a direct application of the Smolyak sparse grid formula and that allows the use of arbitrary admissible sparse grids. The adaptive algorithm is tested using an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2020
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2020.109498